Ehrhart polynomials, h^*-vectors, and triangulations of matroid polytopes

David Haws

Department of Mathematics
University of California at Davis

Joint work with Jesús De Loera1 and Matthias Köppe2

1UC Davis
2Otto-Von-Guericke-Universität Magdenburg and UC Davis.
Matroid

Definition

A non-empty collection \mathcal{B} of subsets of $[n] := \{1, \ldots, n\}$ is the set of bases of a matroid M if and only if

- If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \setminus B_2$, \exists y \in B_2 \setminus B_1$ such that $(B_1 \cup y) \setminus x \in \mathcal{B}$.

B_1: A base of the graph G.
B_2: A base of the graph G.
$B_1 \setminus \{3\} \cup \{1\}$: A base of the graph $G.$
Matroid Examples

Uniform Matroid

The **uniform** matroid of rank r on n elements, denoted $U^{r,n}$, has as bases all r-subsets of $[n] := \{1, \ldots, n\}$.

Graphical Matroids

For a graph G the bases are all spanning trees of G.
Matroid Polytope

Definition

Let M be a matroid, and $\mathcal{B}(M)$ be its set of bases.

- The **incidence** vector of $B = \{b_1, \ldots, b_r\} \in \mathcal{B}(M)$ is defined as
 \[
 e_B := e_{b_1} + e_{b_2} + \cdots + e_{b_r} \in \mathbb{R}^n
 \]
 where of e_i are the standard unit vectors in \mathbb{R}^n.

- The **matroid polytope** $\mathcal{P}(M)$ of M is the convex hull of these points
 \[
 \mathcal{P}(M) := \text{conv}\{ e_B \mid B \in \mathcal{B}(M) \}.
 \]

Example

Ex: $e_{\{1,3,4\}} = e_1 + e_3 + e_4 = (1, 0, 1, 1, 0)^\top$.
Ehrhart Polynomials and h^*-vectors

Ehrhart Polynomial

Definition

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be an integral polytope.

- The **Ehrhart polynomial** of \mathcal{P} is the function $i(\mathcal{P}, k) := \# |k \cdot \mathcal{P} \cap \mathbb{Z}^n|$, where $k \in \mathbb{Z}_{\geq 0}$.
- The **Ehrhart series** of \mathcal{P} is $\sum_{k=0}^{\infty} i(\mathcal{P}, k)t^k$.

Example

Let \mathcal{P} be the unit square in \mathbb{R}^2. Then $i(\mathcal{P}, k) = (k + 1)^2$ and

$$\sum_{k=1}^{\infty} i(\mathcal{P}, k)t^k = \sum_{k=1}^{\infty} (k + 1)^2 t^k.$$
Ehrhart polynomials, \(h^* \)-vectors, and triangulations of matroid polytopes

Introduction

Ehrhart Polynomials and \(h^* \)-vectors

Theorem

Let \(P \) be an integral polytope where \(\text{dim}(P) = d \). Then

\[
\sum_{k=0}^{\infty} i(P, k)t^k = \frac{h_d^* t^d + h_{d-1}^* t^{d-1} + \cdots + h_0^*}{(1 - t)^{d+1}}
\]

and \((h_0^*, \ldots, h_d^*)\) is the \(h^* \)-vector of \(P \).

Example

For \(P \) the unit square in \(\mathbb{R}^2 \), \(i(P, k) = (k + 1)^2 \) and

\[
\sum_{k=1}^{\infty} i(P, k)t^k = \sum_{k=1}^{\infty}(k + 1)^2 t^k = \frac{1 + t}{(1 - t)^3}. \quad \text{\(h^* \)-vector = (1, 1) }
\]
Ehrhart polynomials, h^*-vectors, and triangulations of matroid polytopes

Conjectures

h^*-vectors and Ehrhart Polynomials

Our Two Conjectures

Definition

A vector (v_1, \ldots, v_n) is **unimodal** if $v_1 \leq v_2 \leq \cdots \leq v_i$ and $v_i \geq v_{i+1} \geq v_{i+2} \geq \cdots v_n$ for some $1 \leq i \leq n$.

Conjecture

Let M be a matroid on n elements.

(A) The h^*-vector of $P(M)$ is unimodal.

(B) The coefficients of the Ehrhart polynomial of $P(M)$ have positive coefficients.
The coefficients of the Ehrhart polynomial of $P(U^2,n)$ are positive.

The h^*-vector of $P(U^2,n)$ is unimodal.

Consider $P(U^3,n)$, and let K be a non-negative integer. There exists $n(K) \in \mathbb{N}$ such that for all $n \geq n(K)$ the h^*-vector of $P(U^3,n)$, is non-decreasing from index 0 to K. That is, $h^*_0 \leq h^*_1 \leq \cdots \leq h^*_K$.

[Explanation]
Computational Evidence

Strong Evidence

- Verified both conjectures for all uniform matroids up to 75 elements,
- Verified our h^*-vector conjecture on over 2500 random realizable matroids over various finite fields,
- Verified our conjectures on many other matroids including the famous 28 matroids presented in Oxley’s book.

See the Matroids!

Generating Functions

Generating Function

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a polytope.

$$f(\mathcal{P}) = \sum_{\alpha \in \mathcal{P} \cap \mathbb{Z}^n} z^\alpha,$$

where $z^\alpha = z_{1}^{\alpha_{1}}z_{2}^{\alpha_{2}}\cdots z_{n}^{\alpha_{n}}$.

Example

$$f(\mathcal{P}) =
\begin{align*}
x^1y^1 + x^2y^1 + x^3y^1 + x^4y^1 + \\
x^1y^2 + x^2y^2 + x^3y^2 + x^4y^2 + \\
x^1y^3 + x^2y^3 + x^3y^3 + x^4y^3 + x^3y^4
\end{align*}$$

Note

$$f(1, 1, \ldots, 1) = \#(\text{Lattice points in } \mathcal{P}).$$
Ehrhart polynomials, h^*-vectors, and triangulations of matroid polytopes

Techniques and New Results

New Complexity Results

Efficient Computation of Ehrhart Polynomials

Theorem

Let M be a matroid on n elements with fixed rank r. The Ehrhart polynomial of $P(M)$ can be computed in polynomial time.

Remark

In fact the previous theorem holds for integral polymatroids and independence matroid polytopes with bounded rank condition.

LattE

LattE is software to compute multivariate generating functions and Ehrhart polynomials.

http://www.math.ucdavis.edu/~latte/
http://www.math.uni-magdeburg.de/~mkoeppe/latte/
New Directions

h*-vectors and Unimodal Triangulations

The h-vector of a unimodular triangulation is the h^*-vector.

Variant of White’s Conjecture

Every matroid polytope has a regular unimodular triangulation.

What is known

- Uniform matroid polytopes have a regular unimodular triangulation. [Sturmfels]
- Graphical matroid polytopes are “close” to having a regular unimodular triangulation. [Blasiak ’05]
All simple matroids with less than 9 elements have a unimodular triangulation.

Lemma (Sufficient Condition)

- Let \(M \) be a matroid of rank \(r \) on \(n \) elements and \(T \) a full-dimensional simplex with vertices of \(\mathcal{P}(M) \).
- If \(T \) is connected as an induced subgraph \(G(T) \) of the 1-skeleton of \(\mathcal{P}(M) \), then \(\text{Volume}(T) = 1 \).

Conjecture

The matroid polytope \(\mathcal{P}(M) \) can be covered by simplices \(\mathcal{T} \) such that for all \(T \in \mathcal{T} \), \(G(T) \) is connected. Hence \(\mathcal{T} \) is a unimodular covering.
Ehrhart polynomials, \(h^* \)-vectors, and triangulations of matroid polytopes

David Haws

Thank you for your attention!

http://www.math.ucdavis.edu/~haws/

Unimodular Triangulations and Coverings

<table>
<thead>
<tr>
<th>n</th>
<th>r</th>
<th>h^*-vector</th>
<th>Ehrhart Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_4</td>
<td>6 3</td>
<td>1, 10, 20, 10, 1</td>
<td>1, 107, 21, 49, 7, 7</td>
</tr>
<tr>
<td>W^3</td>
<td>6 3</td>
<td>1, 11, 24, 11, 10</td>
<td>1, 18, 11, 9, 2, 20</td>
</tr>
<tr>
<td>Q_6</td>
<td>6 3</td>
<td>1, 12, 28, 12, 1</td>
<td>1, 109, 33, 59, 9, 9</td>
</tr>
<tr>
<td>P_6</td>
<td>6 3</td>
<td>1, 13, 32, 13, 1</td>
<td>1, 11, 6, 6, 2, 1, 9</td>
</tr>
<tr>
<td>R_6</td>
<td>6 3</td>
<td>1, 12, 28, 12, 1</td>
<td>1, 109, 33, 59, 9, 9</td>
</tr>
<tr>
<td>F_7</td>
<td>7 3</td>
<td>21, 98, 91, 21, 1</td>
<td>1, 21, 343, 63, 91, 77, 29</td>
</tr>
<tr>
<td>F_{7-}</td>
<td>7 3</td>
<td>21, 101, 97, 22, 1</td>
<td>1, 253, 2809, 33, 193, 61, 121, 360</td>
</tr>
<tr>
<td>P^7</td>
<td>7 3</td>
<td>21, 104, 103, 23, 1</td>
<td>1, 217, 479, 69, 1, 25, 7</td>
</tr>
<tr>
<td>$AG(3,2)$</td>
<td>8 4</td>
<td>1, 62, 561, 1014, 449, 48, 1</td>
<td>1, 209, 1981, 881, 119, 95, 499, 89, 20</td>
</tr>
<tr>
<td>$AG'(3,2)$</td>
<td>8 4</td>
<td>1, 62, 562, 1023, 458, 49, 1</td>
<td>1, 299, 4007, 5401, 122, 291, 1013, 77</td>
</tr>
<tr>
<td>R_8</td>
<td>8 4</td>
<td>1, 62, 563, 1032, 467, 50, 1</td>
<td>1, 524, 1013, 1379, 125, 743, 257, 136</td>
</tr>
<tr>
<td>F_8</td>
<td>8 4</td>
<td>1, 62, 563, 1032, 467, 50, 1</td>
<td>1, 524, 1013, 1379, 125, 743, 257, 136</td>
</tr>
<tr>
<td>Q_8</td>
<td>8 4</td>
<td>1, 62, 564, 1041, 476, 51, 1</td>
<td>1, 524, 1013, 1379, 125, 743, 257, 136</td>
</tr>
<tr>
<td>S_8</td>
<td>8 4</td>
<td>1, 44, 337, 612, 305, 40, 1</td>
<td>1, 217, 479, 69, 1, 25, 7</td>
</tr>
<tr>
<td>V_8</td>
<td>8 4</td>
<td>1, 62, 570, 1095, 530, 57, 1</td>
<td>1, 2117, 4367, 2107, 146, 1133, 1133, 193</td>
</tr>
<tr>
<td>T_8</td>
<td>8 4</td>
<td>1, 62, 564, 1041, 476, 51, 1</td>
<td>1, 2117, 4367, 2107, 146, 1133, 1133, 193</td>
</tr>
<tr>
<td>V_8^+</td>
<td>8 4</td>
<td>1, 62, 570, 1095, 530, 57, 1</td>
<td>1, 2117, 4367, 2107, 146, 1133, 1133, 193</td>
</tr>
<tr>
<td>L_8</td>
<td>8 4</td>
<td>1, 62, 567, 1068, 503, 54, 1</td>
<td>1, 2117, 4367, 2107, 146, 1133, 1133, 193</td>
</tr>
<tr>
<td>J</td>
<td>8 4</td>
<td>1, 44, 337, 612, 305, 40, 1</td>
<td>1, 217, 479, 69, 1, 25, 7</td>
</tr>
<tr>
<td>P_8</td>
<td>8 4</td>
<td>1, 62, 565, 1050, 485, 52, 1</td>
<td>1, 217, 479, 69, 1, 25, 7</td>
</tr>
<tr>
<td>W_4</td>
<td>8 4</td>
<td>1, 38, 262, 475, 254, 37, 1</td>
<td>1, 38, 262, 475, 254, 37, 1</td>
</tr>
<tr>
<td>W^4</td>
<td>8 4</td>
<td>1, 38, 263, 484, 263, 38, 1</td>
<td>1, 38, 263, 484, 263, 38, 1</td>
</tr>
<tr>
<td>K_9</td>
<td>9 5</td>
<td>78, 1116, 3492, 3237, 927, 72, 1</td>
<td>1, 307, 137141, 3223, 37807, 211, 5743, 1889, 8923</td>
</tr>
<tr>
<td>$AG(2,3)$</td>
<td>9 3</td>
<td>1, 147, 1230, 1885, 714, 63, 1</td>
<td>1, 315, 1809, 449, 137, 134, 136, 47</td>
</tr>
<tr>
<td>Pappus</td>
<td>9 3</td>
<td>1, 147, 1230, 1915, 744, 66, 1</td>
<td>1, 315, 1809, 449, 137, 134, 136, 47</td>
</tr>
<tr>
<td>Non-Pappus</td>
<td>9 3</td>
<td>1, 147, 1230, 1925, 754, 67, 1</td>
<td>1, 315, 1809, 449, 137, 134, 136, 47</td>
</tr>
<tr>
<td>$Q_3(GF(3)^*)$</td>
<td>9 3</td>
<td>1, 147, 1098, 1638, 632, 59, 1</td>
<td>1, 433, 3079, 4193, 594, 167, 601, 787, 19</td>
</tr>
<tr>
<td>R_9</td>
<td>9 3</td>
<td>1, 147, 1142, 1717, 656, 60, 1</td>
<td>1, 373, 1140, 5, 1440, 120, 144, 840, 1440</td>
</tr>
</tbody>
</table>
h^*-vectors of $P(U_3^n)$.

<table>
<thead>
<tr>
<th>n</th>
<th>h^*-vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\ast)</td>
</tr>
<tr>
<td>2</td>
<td>$(\ast, \ast, \cdots, \ast)$</td>
</tr>
<tr>
<td>3</td>
<td>$(\ast, \ast, \ast, \cdots, \ast)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$n(K) - 1$</td>
<td>$(\ast, \ast, \ast, \ast, \cdots, \ast)$</td>
</tr>
<tr>
<td>$n(K)$</td>
<td>$\underbrace{(\ast, \ast, \ast, \ast, \ast, \cdots, \ast)}_{0-K}$ Non-decreasing from 0 to K</td>
</tr>
<tr>
<td>$n(K) + 1$</td>
<td>$\underbrace{(\ast, \ast, \ast, \ast, \ast, \cdots, \ast)}_{0-K}$ Non-decreasing from 0 to K</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Back to Theoretical Evidence
Example of Barvinok Rational Functions

Let $\mathcal{P} = \{ x \in \mathbb{R} \mid 0 \leq x \leq 10 \} \subseteq \mathbb{R}$.

We need two rational functions, one for each of the cones $C_1 = \{ x \mid x \geq 0 \}$ and $C_0 = \{ x \mid x \leq 10 \}$.

\[(C_0) \quad \frac{1}{1-x} = 1 + x + x^2 + \cdots \]

\[(C_1) \quad \frac{1}{1-x^{-1}} = 1 + x^{-1} + x^{-2} + \cdots \implies \frac{x^{10}}{1-x^{-1}} = x^{10} + x^{9} + x^{8} + \cdots \]

Sum the two functions

\[f(\mathcal{P}) = \frac{1}{1-x} + \frac{x^{10}}{1-x^{-1}} = \frac{1}{1-x} - \frac{x^{11}}{1-x} = \frac{1 - x^{11}}{1-x} = 1 + x + x^2 + \cdots + x^{10}.\]
Ehrhart polynomials, h^*-vectors, and triangulations of matroid polytopes

New Directions

Unimodular Triangulations and Coverings

Definition

Let $\mathcal{P} \subseteq \mathbb{R}^n$ be an integral polytope and \mathbb{F} a field.

$A_q(\mathcal{P}) := \mathbb{F} \cdot \{ Y_1^{\alpha_1} \cdots Y_n^{\alpha_n} T^q \mid (\alpha_1, \cdots, \alpha_n) \in q\mathcal{P} \}.$

$A(\mathcal{P}) := \bigoplus_{q=1}^n A_q(\mathcal{P})$ is the Ehrhart Ring of $\mathcal{P}.$

FACT

If \mathcal{P} is an integral polytope and the Ehrhart ring $A(\mathcal{P})$ is Gorrenstein, then the h^*-vector of \mathcal{P} is unimodal.

Unimodal yet not Gorrenstein

The matroid polytopes are a case where the Ehrhart ring is not Gorrenstein yet its h^*-vector is unimodal for all experiments thus far.